SMAUG Update to v2.0

Jung Hee Cheon® 2, Hyeongmin Choe!, Dongyeon Hong?, Jeongdae
Hong?3, Hyoeun Seong?, Junbum Shin?, MinJune Yil 2

1Seoul National University, 2CryptoLab Inc., 3Ministry of National Defense

7-th KpqC workshop
November 13, 2023

SMAUG

::::::::::

&'

Through a few improvements, SMAUG has been further enhanced

@ More efficient!

e FO-transform updated to avoid hashing and simplify proof
o Reference code was partially optimized

1/6

Through a few improvements, SMAUG has been further enhanced

@ More efficient!

e FO-transform updated to avoid hashing and simplify proof
o Reference code was partially optimized

@ Constant time implementation

o HWT sampling updated to avoid rejection sampling
o Conditional statement was removed from ciphertext comparison

1/6

Through a few improvements, SMAUG has been further enhanced

@ More efficient!

e FO-transform updated to avoid hashing and simplify proof
o Reference code was partially optimized

@ Constant time implementation

o HWT sampling updated to avoid rejection sampling
o Conditional statement was removed from ciphertext comparison

@ Enhancing code security

e A bug was fixed in convToldx
o Constant time & memory leakage were checked using Valgrind

o followed the same method as in KPQClean

@ no vulnerabilities were found in the updated version

1/6

Main changes: FO-transform

Tweaked FO-transform generates shared key without ciphertext contribution
[GMP21][FIP23]

(a) SMAUG v0.9 (b) SMAUG v1.0 (May, 2023)
Encap(pk): Encap(pk):
1 p < {0,1}%6 1 p 4+ {0,1}2%
2: seed « G(u, H(pk)) 2. (K,seed) < G(p, H(pk))
3: ct + PKE.Enc(pk, u; seed) 3: ct < PKE.Enc(pk, u; seed)
4 K <+ KDF(u, H(ct)) 4: return ct, K
5: return ct, K
Decap(sk, ct): > sk = (sk', d) Decap(sk, ct): > sk = (sk’,d)
1 p' = SMAUG.PKE.Dec(sK', ct) 1. 4 = SMAUG.PKE.Dec(sK', ct)
2: seed’ + G(i/, H(pk)) 2 (K’,seed’) < G(i/, H(pk))
3: ct’ = PKE.Enc (pk, /; seed’) 3: ct’ = PKE.Enc (pk, /'; seed’)
4: if ct # ct’ then 4 (K,)« G(d, H(ct)
5 K'« G(d,H(ct)) 5 if ct # ct’ then
6: else 6 K « K
7K'« Gy, H(ct)) 7: end if
& end if 8 return K’
9 return K’

2/6

Main changes: HWT sampling

Hybrid combination of SamplelnBall & CWW sampling [Sen21]

(a) rejection sampling used (b) CWW sampling applied
HWT: HWT,:
1: Initialize ¢ = ¢yey...cp—1 = 00...0 1: Initialize ¢ = ¢ycy...c—1 = 00...0
2: for i fromn —hton—1do 2: for i fromn —h ton—1 do
3 while (j > i) do bj<i 3 5&{0,1,...,282 -1}
4 §&{0,1,..,n—1} & je|i+1)-5/22] bji<i
5 end while 5. b« {0,1}
6: b+ {0,1} 6: ¢ i=¢j
T Gi=c 7. ci=(-1)P
8: cj = (-1)° 8: end for
9: end for 9: return c
10: return c
@ Re-seeding is required in some cases @ No additinal XOF call required
@ Number of XOF calls depends on @ Running time doesn’t depend on
input seed input seed

3/6

Performance (cpu cycles)
e Intel(R) Core i7-10700K (3.80GHz)
@ The compiler gcc 9.4.0 with -O3 and -fomit-frame-pointer.

|

H Smaugl28 \ Smaugl92 \ Smaug256

Keygen 73,061 135,899 240,254

Encap 71,669 123,763 230,521

Decap 91,007 156,293 270,437
Secret key || 176 (848) | 236 (1324) | 218 (2010)
Public key 672 1088 1792
Ciphertext 672 1024 1472

@ SMAUG is now about 5-15% faster than previous version

o Number of XOF calls reduced in HWT sampling
e Other functions are partly optimizaed in reference code

4/6

Benchmark

SMAUG is efficient & fast!

Reference Implementation Speed
Size Comparison 500

400

300

200

100 I I I
& g

keyaen encap decap

Keycles

Khbytes
(—
%,
0, —————

[]
g
[

- Kyber: https://github.com/pg-crystals/kyber (a621b8d), Saber: https://github.com/KULeuven-COSIC/SABER (f7f39e4)
5/6

Conclusion

Reminder:
@ It has the advantages of both LWE's security and LWR's efficiency

@ Small bandwidth & memory consumption which is suitable to loT

environment

6/6

Conclusion

Reminder:
@ It has the advantages of both LWE's security and LWR's efficiency

@ Small bandwidth & memory consumption which is suitable to loT

environment

Updated:
@ SMAUG is now more fast and securely implemented

@ SMAUG offers superior performance and bandwidth compared to

other lattice schemes that don't use ECC

6/6

Thanks [

References |

[FIP23]

[GMP21]

[Sen21]

Federal Information Processing Standards (Draft): FIPS203.
Module-lattice-based key-encapsulation mechanism standard, 2023.
https://csrc.nist.gov/pubs/fips/203/ipd.

Paul Grubbs, Varun Maram, and Kenneth G. Paterson.
Anonymous, robust post-quantum public key encryption.
Cryptology ePrint Archive, Paper 2021/708, 2021.
https://eprint.iacr.org/2021/708.

Nicolas Sendrier.

Secure sampling of constant-weight words — application to bike.
Cryptology ePrint Archive, Paper 2021/1631, 2021.
https://eprint.iacr.org/2021/1631.

https://csrc.nist.gov/pubs/fips/203/ipd
https://eprint.iacr.org/2021/708
https://eprint.iacr.org/2021/1631

