Graph-based cryptography

Improved Perfect Code Cryptosystem 7

FX2 = DICH
==l = DICH
=5 Ef CSHL
a3 = DICH
484l = DICH

. Motivation

. PDS & PDF in a graph

. Perfect Code Cryptosytem (PCC)
. IPCC (Improved PCC)

. IPCC7 (degree 7 polynomial)

. Attacks & Responses

RASE (o

1. Introduction &

Motivation
- In 1992, Koblitz and Fellows proposed a graph-based public key cryptosystem.

- The complexity of finding a certain subgraphs in a graph, and it is predicted to be an
NP-hard problem that has potential applications in PQC.

Hard problems in Graph Theory

- To determine whether a given graph has a PDS is NP-hard.

- To find a PDS in a graph is believed to be infeasible. (pZ?fzct

Dominating
Set)

difficult
——

graph G = (V,E) Find a PDS of G.

M. Fellows, and N. Koblitz, “Combinatorially based cryptography for children (and adults),” Congressus Numerantium, 9

~
2. PDS & PDF in a graph RASE@

PDS (Perfect Dominating Set)

For every vertex v in the graph G = (V,E),
if N[v] contains exactly one of the elements of vertex set A C V,
then A is called the PDS of G.

JAcCV s.t. Vv €V, IN[v]nA| =1

Ut Uy 51 ' Uy
Every elements v of A belong
Ve Us Vs Us [to the set N[v] only once
1%/ Ug %) Ug PDS
[U3 V2 U3 V = {vy, vy, V3, Vs, Vs, Vg, Uy, Vg} A = {vy, vg}
™ ” v U N[V1] = {vy, V3, Vg, Ve} N[Vz] = {vy, vy, V3, U7}
5 4 v 4 N[Vs] = {vy, V3, vy, Vg} N[V4] = {vy, V3, Vg, Vs}
6 5 6 5
N[Vs] = {vy, Vs, Vg, Vg} N[Vs] = {vy, vy, Vg, Ve}
v7 v8 v7 178
vZ 173 vZ v3 N[v7] - {UZ/ v6/ 177, v8} N[US] - {v3/ US/ v7/ US}
U1y A Vs 51 ' Uy V1t A2 %1 Uy
Vel Vs Vel (Vs Vel Vs VT Vs
U p—AUs V7 p—Us U p—Us Vp—\Us
v V3 V2 vz 12 U3 V2 U3

Improved Perfect Code Cryptosystem 4

2. PDS & PDF in a graph RASE@

PDF (Perfect Dominating Function)

Let f: V - {0,1} is a function
that maps from vertex set V to set {0,1} for graph G = (V,E).
f is called a PDF if it is satisfying the following condition

Vv eV, ZuEN[v]f(v) =1

assign each vertex of the PDS to 1
1,ifveA and all others to O, then f is a PDF

flv) =x, = {0, otherwise
0 1
V = {v1, vy, v3, V4, Vs, Vg, V7, Vg} A = {vy, vg}
" ” Xp, =1, %,,=0, %,,=0, x,,=0, x,,=0, x,,=0, x,=0 x,=
DN A ueN[v] Xu = Xo, F Xp, Xy, H X5, = 1 X enp,] Xu = Xp, F Xp,+ Xp+ Xy, = 1
v, Vg ZUEN[%] Xy = Xy + Xyt Xy, + Xy = 1 z:MEN[M] Xy = X+ Xpg+ Xy, + Xy = 1
ZueN[vs] Xu = Xp,+ Xpg+ Xpg+ X5, = 1 X enp] Xu = X, + Xp, + Xy, + Xp, = 1
v2 V3 ZueN[v] Xu = Xv,F Xpg+ Xy + X5, = 1 X enp] Xu = Xpg+ Xpg+ Xy, + X = 1

Invariant polynomial (of degree one)

Improved Perfect Code Cryptosystem

RASE (o

3. Perfect Code Cryptosytem (PCC) O

Hard problem in Graph-based Public Key Cryptosytem

IPCC .
public key: G = (V,E) @ private key: PDS of G @

Message M = m; + m, + -+ my, Reduction Ciphertext C
myP11(IP12() + Map21 (P22 () + -+ + Muppa (Dpna2 () » C = f(xvl, Xpys wees va)

p;;(-): Invariant polynomials

easy

Message Ciphertext C
M is a polynomial

’\hard f(xv1'xvz""'xv1v)
-

NG .0;1\' easy with private key PDS
0 0 0 by evaluating f (1 for PDS, 0 for else)

Improved Perfect Code Cryptosystem

3. PCC - Perfect Code Cryptosystems RASE@

Perfect Code Cryptosystems

This cryptosystem relies on the problem of finding a PDS in the graph.

public key : 3-regular graph having PDSes

0, otherwise

secret key : PDF f(v) = x,, = {1' if v e A(PDS)

- Alice €1 + €2 =m Bob n
b I 4 ™)
. 1. Keygen
2. Encryption oo .] y9
* 1 p 1]1 1Y) {‘\
Qns 4
Ver—{Vs — h 1 0
0".. 6 US
n %) ’Ug . v, Vg
% ’ s
2 ..l l'. vz v3
k sk
Ct(xvll xvzl V4 xvn) _ p)
= ZSEI Cs HvES ZuEN[v] Xu (3 b " 1/ A
— . Decryption
m — ct
l Due to the property of PDF, f Ct(xvll Xvyr " xvn) = m
the value always satisfies 1 \.

Improved Perfect Code Cryptosystem

RASE on)

4. IPCC - Round 1 version of IPCC (KpgC Submission)

Improved Perfect Code Cryptosystems

Y

public key : 3-regular graph having PDSes
secret key : PDF

" Alice Bob n
™\ e ™)
2. Encryption v I 1. Keygen
1 A 14 (2] U \e‘\
Vel 105 o VeT—1Vs . /
Invariant polynomial f’ v Us vy Vg
of degree k; + k; Uy U3 v V-
2 3
\ Ct(xvl/ xvzl ”'/ xvn) _ pk Sk J
=F(m) = f1(my) X f,(m;) V
=|2se1 Cs [lves ZuEN[v] Xy l
3. Decryption
X|Xse1 Cs [ves ZuEN[v] Xy || ct
———— ct(xvl, Xpy, xvn) =my X m,

Invariant polynomial of degree k4, k,

Improved Perfect Code Cryptosystem

4. Round 1 version of IPCC — Attack & Response RASE@

New attack technique and problem analysis for 15t round IPCC

Paragraphs about new attack technique among the feedback received on the proposed algorithm

As an example, consider the first example in the KAT for the case of f1. This is given a message m = 18790. The ciphertext
produced by the reference implementation contains the following list of coefficients (here stated without their multiplicities):
[35, 9087, 14460, 16002, 16620, 21637, 22560, 24760, 33530, 36038, 36868, 38564, 39587, 39792, 62376].

Summing these up gives us 411916 = 18790 mod 65521, which indeed is the plaintext. Note that the KAT file shows the hash of
the ciphertext, not the ciphertext itself. We ran this attack on ciphertexts produced by the KAT. There are some few cases (2 out
of 100 for f1, 0 out of 100 for f3, 8 out of 100 for f4) where this simple attack does not give the plaintext: in these cases, there
are more than 15 coefficients, because variables repeated leading to combinations. We are still working on tracing through
those to determine which of the coefficients we need to skip in summing up. We think that counting the frequency of
occurrence will give us information. But we wanted to announce our findings so far as a fast attack with a success probability of
more than 90% means that the system is typically broken.

To increase the attack complexity, the degree k must be large,
but the coefficients of high degree terms do not mix

Each coefficient generated in the encryption process is shared by 4% terms
These two reasons appear to be the root of the problem

» The fundamental problem of the encryption process in the previous version

Improved Perfect Code Cryptosystem 9

RASE on)

5. IPCC7 - using polynomial of degree 7 N/

Concepts of Invariant polynomials in IPCC7

General invariant polynomial of degree k (recursively generated)

Y (fi — a;) x,, for message ; (u; € N|u;])

Since | = 0,1,2 or 3 on 3-regular graph, /
invariant polynomial: (f, — ao)xuo +(f; — al)xu1 +(fz — az)xu2 +(fs — ag)xu3

and f; is invariant polynomial of degree < k —1

Due to the property PDF, only one coefficient (fx — ax) for x,,, s.t. x,, = 1 where uy € N|u;]

will remain.

In the previous algorithm IPCC,

all f; — a; were identical to the invariant polynomial for x,, of degree one

(ex. (xu‘r) + xu; + xug + xué) Xu, + (xu(r) + xu; + xug + xué) Xu, + (xu(r) + xu; + xué + xué) Xu, + (xu(r) + xur1 + xué + xug) Xy,

= (xu(r) X+ xué) (xuo + Xy, Xy, + xu3))

Improved Perfect Code Cryptosystem

5. IPCC7 - implementation

Comparison of IPCC and NIST PQC candidates

Features of IPCC e TR
- Small public key(768 bytes) |
but huge ciphertext(250 KB) g .
S 409 e e
3 e
. . = @
- Fast decryption 2Gbps (intel I5) o ...;‘..' L
(naturally parallelizable) . , o°® Kyber
RSA © McEliece ¢
([X]
- Suitable for Whitebox Cryptog raphy (14(:4 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65536 131,072 262,144 524,288
. Public Key (bytes)
(one-wayness) with large memory o
S McEliece o
®e
[]
= ours
ct = A85T305TT Xy Xy, 0%y 04X 0 Xva s Xvane ;; - - b
+1185214412 X, Xyqy Xygs Xvgg Xvag Xvyos Xvang Ky . o F e,
03¥vag0 "
+ 1187133452 Xy Xygs Xv120%v1 34 Xv160Xvaso Xvass = I.(l.) *%, o ° o®
+ 252775020 XysqXvraXv164Xv166Xva06Xvaas Xvaso & yoer 2
+1280749315 Xy Xy Xugg Xy o Kooy Xy M RSA
+1393233314 Xy, o Xy g Xvas XvgsXviay XvaneXrays 5
+ 832293056 Kvg1 XvgoXvesXviasXvassXvaay 5
+ 484242184 KvgaXvag XvyiatvinaXvaoe
—I— 93293340 "-"'31x"'f:iﬂ'x"'r_').ﬁ'xl'lﬂ[:l'x"l.lﬁ"{L'QESIPEQQ ! 1 10 100 1,000 10,000 100,000 1,000,000
+19266961 76 Xy Xvag Xvga Xvga Xvyag Avigg Cyclesfor Gen+ Enc+ Dec (1000sof cycles)

+ 1442193836 X,y Xypo Xogr Xoy 00 X100 Xy 66
LHNTRISOTO xo X X X X X X

Improved Perfect Code Cryptosystem

6. Bernstein’s attack on IPCC7

numvertices = 256

neighbors = {}

IPCC7 key recovery def attack():
) M =[]
D. J. Bernstein djb(‘l\' @ 98 292 () 2= 8 (122 H) for v in neighbors:
L}, caji67, yoon, jskang, salt, Tanja, Jolijn®f 4| + Mj = [O]*numvertices

Mj[v] = 1

for w in neighbors[v]:
Mj[w] = 1

M o= [Mj]

Dear designers of the IPCC system,

It appears to be possible to efficiently find secret keys from IPCC7

M = matrix(QQ,M)

public keys with high probability. Please see the attached Sage script M = M.echelon form()
for details. Inserting todo = []
for row in M:
for j in range(len{row)):
for (long long i = 0;i < 6*"NUMPDS;++i) if row[j] != @:
. " o assert row[j] == 1
pnntf(pk %lld %d %d\n ’I’(Int) pk[l][O](lnt) pk[l][”} todo += [(j,[(i,row[i]) for i in range(len(row)) if row[i] != @])]
printf("pkendin”); break

classification = {}

into the C code for IPCC7 produces the appropriate input format for the i w4 “ansgém[‘mve"ticisiﬂ {)
c = vector{QQ,[i = v for i in range(numvertices)])

Sage script. In experimenis with 10 keys, 7 partitioned the vertices - 3 ©

into four sets of size 64, and 3 partitioned the vertices into two sets

for j,iri in todo:

: continue
of size 64, two sets of size 63, and two sets of size 1.An! of the sets for i,ri in iri:
i ; c[i] -= cj*ri
of size 64 should work for decryption, and we checked that one example c.set_immutable()
matches the original secret key. classification[v] = c

for ¢ in set(classification[j] for j in classification):

We also noticed that the public keys include A-B edges followed by A-C part = [j for j in sorted(classification) if classification[j] == c]
.) . i print(len(part), "element(s):'," '.join(str(j) for j in part))

edges, allowing a simpler attack that intersects those edges to find A. print (")

Sorting the edges before releasing public keys would stop this simpler

for line in sys.stdin:

attack, but would not affect the attached Sage script. line = line.split()
if line[@] == 'pk':
v@,vl = map(int,line[2:4])
Please let us know if you have any questions. if v@ not in neighbors:

neighbors[v@] = []
neighbors[v@] += [v1]
All the best if vl not in neighbors:
. . neighbors[vl] = []
Dan, Jolijn, and Tanja neighbors[vi] += [ve]
if line[@] == "pkend”:
attack()
neighbors = {}

Improved Perfect Code Cryptosystem

6. RREF attack on IPCC7 RASE@

numvertices = 256
neighbors = {}

def attack():
m=]

0

1

for v in neighbors:

0 - Mj = [@]*numvertices
1 Mj[v] = 1

O A for w in neighbors[v]:
Mj[w] = 1

1 172 173 M += [Mj]

1/ Examp]e graph M = matrix(QQ,M)

M = M.echelon_form()

o
/
<
=
S

o
RO OO RR R
COoOORR RO R
_OR Rk OO0 O
ORR RRPOOO R
_ R m OO0 OR O

Gaussian elimination todo = []

for row in M:
for j in range(len{row)):
if row[j] != O:

_1 assert row[j] == 1
(\ todo += [(j,[(i,row[i]) for i in range(len(row)) if row[i] != @])]
todo = [(1, [(1, 1), (8, -D)]),
(2’ [(2’ 1)) (61 1); (8, 1)]), classification = {}

for v in range(numvertices):

(3,[(3,1),(6,-D)]), c - vector(QQ,[1 == v for i in range(numvertices)])
(4’ [(4, 1)]), 3iri in todo:
) (5' [(5' 1)' (6’ 1)' (8’ 1)])’ for i,ri in iri:

6 [(7. DD i e

c.set_immutable()

O OO OO O
SO rRrO OFr

O OO OO O O

- oo oo RO O - _ OO O R =k O
O OO RO OO O
cocoro lLro

S OO OO OO -

classification[v] = ¢

~ O OO OFr OO o

- RREF(M) for ¢ in set(classification[j] for j in classification):

part = [j for j in sorted(classification) if classification[j] == c]
................................... print(len(part), "element(s):'," '.join(str(j) for j in part))

----------------- print(’")
...
.
. for line in sys.stdin:

line = line.split()

1

—1

0 {172, 175} A7 TATETE] =
- vB,vl = map(int,line[2:4])

0 :

—1

0

0

if v@ not in neighbors:

---------- 'Tr {vl’ v8} neighbors[v@] = []

neighbors[v@] += [v1]
if vl not in neighbors:

. neighbors[vi] = []
SEENAEEEEAEEEEAEEEEAEEEAAEEEAEEEEaE -"“' neighbors[vl] += [v@]
.............. if line[@] == "pkend”:

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII . attacki)
neighbors = {}

Improved Perfect Code Cryptosystem

RASE (o

6. 3-regular graph generated in KeyGen of IPCC7 O

KeyGen
caselﬁ in IPCC7 case2 case3

New type of
3-regular graph
having a PDS

Improved Perfect Code Cryptosystem

7. 3-regular graph secure against Bernstein’s RREF attack

RASE, @

casel

case2

Itis nota PDS

case3

Failure to
separate
meaningful sets

Improved Perfect Code Cryptosystem

Improved Perfect Code Cryptosystem

HAFRILICE

	Improved Perfect Code Cryptosystem 7
	슬라이드 번호 2
	1. Introduction
	2. PDS & PDF in a graph
	2. PDS & PDF in a graph
	3. Perfect Code Cryptosytem (PCC)
	3. PCC - Perfect Code Cryptosystems
	4. IPCC – Round 1 version of IPCC (KpqC Submission)
	4. Round 1 version of IPCC – Attack & Response
	5. IPCC7 – using polynomial of degree 7
	5. IPCC7 – implementation
	6. Bernstein’s attack on IPCC7
	6. RREF attack on IPCC7
	6. 3-regular graph generated in KeyGen of IPCC7
	7. 3-regular graph secure against Bernstein’s RREF attack
	슬라이드 번호 16

